
DOI: 10.1002/anie.200604084

Coordination Chemistry

A Classical Silver Carbonyl Complex [{MeB[3-(Mes)pz]₃}Ag(CO)] and the Related Silver Ethylene Adduct [{MeB[3-(Mes)pz]₃}Ag(C₂H₄)]**

H. V. Rasika Dias* and Mauro Fianchini

Silver complexes of small unsaturated molecules such as carbon monoxide and ethylene are of tremendous fundamental importance and practical value. [1-7] Yet, structurally characterized silver(I) complexes featuring CO and C_2H_4 ligands are rare. [3-12] The isolation of such thermally stable adducts is a very challenging task because silver(I) is a poor σ acceptor, a poor π donor, and in general forms extremely labile adducts with π -acidic ligands. [1,6] The light sensitivity of silver adducts, the oxidizing nature of silver, and the easy displacement of the coordinated CO and C_2H_4 ligands by many other weakly donating species (which includes common solvents) present further synthetic challenges. The entropic factors arising from "fixing" gases are also believed to play a detrimental role. [7]

Despite theses difficulties, a few AgI-CO and AgI-C₂H₄ complexes have been isolated and characterized structurally. include $[Ag(CO)_2][B(OTeF_5)_4]$, [Ag(CO)][B- $(OTeF_5)_4$, [8,9] [{HB[3,5-(CF₃)₂pz]₃}Ag(CO)], [10] [{MeB[3- $[{HB[3,5-(CF_3)_2pz]_3}Ag(C_2H_4)],^{[11]}$ $(C_2F_5)pz]_3Ag(CO)]_3$ $[\{MeB[3-(C_2F_5)pz]_3\}Ag(C_2H_4)],^{[3]}$ $[Ag(C_2H_4)_3][Al\{OC (CF_3)_3\}_4]$,^[7] and $[\{HC\{(CF_3)C[3,5-(CF_3)_2C_6H_3]N\}_2\}Ag(C_2H_4)]$ (pz = pyrazolate). [12] All these compounds contain weakly coordinating, highly fluorinated ligands. Furthermore, silver(I) carbonyl adducts described above exhibit stretching frequencies for $\nu_{\rm CO}$ higher than that for free CO (2143 cm⁻¹), and range from 2204 cm⁻¹ in [Ag(CO)][B(OTeF₅)₄] to 2153 cm⁻¹ in $[\{MeB[3-(C_2F_5)pz]_3\}Ag(CO)]$. These are classified as nonclassical metal carbonyl complexes.^[5,13] Herein, we describe the synthesis and structural characterization of the first classical silver carbonyl complex, along with the related silver(I) ethylene adduct. We also demonstrate the successful use of a nonfluorinated, relatively electron-rich ligand in Ag^I-CO and Ag^I-C₂H₄ chemistry.

The complex [{MeB[3-(Mes)pz]₃}Ag(C₂H₄)] (1, Figure 1) is obtained through a metathesis reaction between the thallium salt [MeB{[3-(Mes)pz]₃}Tl]^[14] and CF₃SO₃Ag in CH₂Cl₂ under an ethylene atmosphere, and is a white powder with remarkable stability. The ¹H NMR spectroscopic data collected from a week-old sample stored at room temperature in a dark container showed no decomposition.

The X-ray analysis revealed that **1** crystallizes in the *R3c* space group with a threefold rotation axis containing the B and Ag atoms (Figure 2). The tris(pyrazolyl)borate ligand

[*] Prof. Dr. H. V. Rasika Dias, M. Fianchini Department of Chemistry and Biochemistry The University of Texas at Arlington Arlington, TX 76019 (USA) Fax: (+1) 817-272-3808

E-mail: dias@uta.edu

Homepage: http://www.uta.edu/chemistry/html/dias.html

[**] H.V.R.D. thanks the Robert A. Welch Foundation (grant Y-1289) and the National Science Foundation (CHE-0314666) for financial support of this research. Mes = 2,4,6-trimethylphenyl, pz = pyrazolate. Herein, we use abbreviations based on IUPAC guidelines, that is, ν for frequency and $\tilde{\nu}$ for wavenumber.

Supporting information for this article, including complete details of the synthesis, characterization, and additional X-ray structures, is available on the WWW under http://www.angewandte.org or from the author.

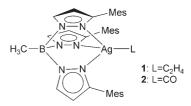


Figure 1. [{MeB[3-(Mes)pz] $_3$ }AgL] complexes (L= C_2H_4 , CO). Mes=mesityl=2,4,6-trimethylphenyl.

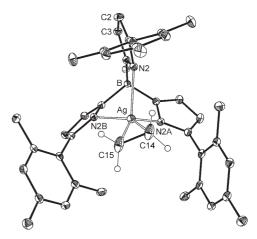


Figure 2. Molecular structure of 1. All the hydrogen atoms, except those on ethylene moiety, have been omitted for clarity. Selected bond lengths [Å] and angles [°]: Ag-C14 2.27(3), Ag-C15 2.28(3), Ag-N2 2.3404(14), C14-C15 1.323(12), Ag-················ 3.422; C14-Ag-C15 33.8(3). Thermal ellipsoids are set at the 35% probability level.

coordinates to the silver ion in a tripodal fashion with an Ag-N bond length of 2.3404(14) Å. The ethylene moiety is distributed equally over three positions inside the coordination pit of the tris(pyrazolyl)borate ligand and coordinates to silver in an η^2 -fashion with a C=C bond length of 1.323(12) Å. The corresponding distance in [{MeB[3-(C₂F₅)pz]₃}Ag(C₂H₄)] is not significantly different at 1.314(4) Å.^[3]

The ¹H NMR signal corresponding to the ethylene group appears at $\delta = 3.42$ ppm in the spectrum recorded in CDCl₃, which is significantly upfield compared with the corresponding signal of free ethylene ($\delta = 5.40 \text{ ppm}$). The ¹H NMR spectra of related silver ethylene adducts with fluorinated ligands $[{HB[3,5-(CF_3)_2pz]_3}Ag(C_2H_4)]^{[11]}$ and $[{MeB[3-1]_2}]^{[11]}$ $(C_2F_5)pz_3Ag(C_2H_4)^{[3]}$ contain this signal at a relatively downfield region ($\delta = 5.56$ and 5.48 ppm, respectively). The upfield or downfield shifts of these signals resulting from a coordinated ethylene moiety have been previously correlated with an increase or decrease in the ability for $M \rightarrow C_2H_4$ π backbonding. [16] Although greater $Ag \rightarrow C_2H_4 \pi$ backbonding is a possibility with 1, [17] the relative magnitude of the shift is unusually high and indicates that some additional factors are contributing to the effect. One likely reason for a large upfield shift is the shielding caused by the ring-current effect of the three mesityl substituents that surround the ethylene unit. The ethylene moiety of $[HC\{(CF_3)C(3,5-(CF_3)_2C_6H_3)N\}_2]$ [Ag(C₂H₄)]^[12] is somewhat flanked by aryl groups and the signal for the ethylene group is also shifted upfield (δ =

Communications

 $3.78\,ppm$ in C_6D_6).^[12] To further investigate this, we synthesized $[\{MeB[3-(Mes)pz]_3\}Cu(C_2H_4)]^{[18]}$ and compared the ethylene signal in the ¹H NMR spectrum to that obtained for [{HB[3,5-(Me)₂pz]₃}- $(\delta = 2.61 \text{ ppm})$ and $Cu(C_2H_4)$ respectively).[19] $\delta = 4.41$ ppm, Although the latter has a relatively electron rich copper atom with a greater π -donor capability, [17] the upfield shift is relatively small compared with the signal for free ethylene ($\delta = 5.40 \text{ ppm}$). These results are consistent with the possible contribution from ring-current effects, although further studies are required to justify this claim. The shifts in the ¹H NMR signals for the ethylene groups in

the [{MeB[3-(Mes)pz]₃}M(C_2H_4)] adducts (M = Cu and Ag) are in agreement with the greater backbonding ability of copper(I) as compared to silver(I).^[1,5,20]

The ethylene group of 1 is labile in solution; in C_6D_{12} , the 1H NMR spectrum contains a signal at $\delta=3.40$ ppm which corresponds to the ethylene moiety. Addition of free C_2H_4 to the solution led to the coalescence of the bound ethylene signal. This signal reappeared on purging the solution with N_2 (to remove the excess free ethylene). The ^{13}C NMR signal corresponding to the bound ethylene appears as a broad signal at $\delta=95.4$ ppm.

Complex 1 is a good precursor to obtain the corresponding Ag^I —CO adduct. The treatment of 1 with carbon monoxide in hexane led to [{MeB[3-(Mes)pz]₃}Ag(CO)] (2, Figure 1) in quantitative yield. The removal of the solvent under reduced pressure from concentrated solutions of 2 does not lead to the loss of coordinated carbon monoxide but the carbonyl adducts tend to lose carbon monoxide from dilute solutions. However, solid 2 shows remarkable stability; for example, a solid sample of 2 stored in a sealed dark vial (filled with air) at room temperature showed a ν_{CO} band in the IR spectrum even after 60 days.

The FTIR spectrum of **2** in KBr displays a strong band at 2125 cm⁻¹ (2128 cm⁻¹ in hexane; 2129 cm⁻¹ in CH₂Cl₂) that can be assigned to $\nu_{\rm CO}$. This value is lower than that observed for free CO (2143 cm⁻¹, Table 1). As indicated earlier, all the Ag¹–CO compounds that have been structurally characterized thus far show nonclassical behavior ($\tilde{\nu}_{\rm CO} > 2143$ cm⁻¹).^[5] There is one report that describes the existence of [{CpCo[P(O)(OEt)₂]₃}Ag(CO)] with the $\nu_{\rm CO}$ band appearing in the classical carbonyl region (2125 cm⁻¹ in hexane),^[21] although the $\nu_{\rm CO}$ band in methanol appears at 2147 cm⁻¹. In any event, apart from the IR data of the complex in solution, this molecule has not been isolated or fully characterized.

Compound **2** crystallizes in the $P2_1/n$ space group with two chemically similar but crystallographically different molecules in the asymmetric unit. The silver atom adopts a distorted tetrahedral geometry (Figure 3). The average Ag-N bond distance is marginally shorter than those in the ethylene

Table 1: Selected structural and spectroscopic parameters for Au-CO compounds. [a]

	Compound	$ ilde{ u}_{CO} \ [cm^{-1}]$	Ag–C [Å]	Ag-N [Å] ^[c]	C–O [Å]	Ref.
Nonclassical	[Ag(CO)][B(OTeF ₅) ₄] [Ag(CO) ₂][B(OTeF ₅) ₄] [Ag(CO)][OTeF ₅]	2204 ^[b] 2198 ^[b,c] 2189 ^[b]	2.10(1) 2.14(5) ^[c]		1.077(16) 1.08(6) ^[c]	[22] [22] [22]
	[{HB[3,5-(CF ₃) ₂ pz] ₃ }Ag(CO)] [{HC[3-(tBu)pz] ₃ }Ag(CO)]SO ₃ CF ₃	2178 ^[b] 2154 ^[d]	2.037(5)	2.328(4)	1.116(7)	[10] [23]
	[{MeB[$3-(C_2F_5)pz]_3$ }Ag(CO)] [{HB[$3,4,5-(Br)_3pz]_3$ }Ag(CO)] [{HB[$3-(CF_3),5-(Ph)pz]_3$ }Ag(CO)]	2153 ^[e] 2153 ^[f] 2149 ^[g]	2.030(4)	2.314(3)	1.117(4)	[3] [24] [17]
Classical	free CO [{CpCo[P(O)(OEt) ₂] ₃ }Ag(CO)]	2143 2125 ^[g] (2147) ^[h]			1.1283	[25] [21]
	$[{MeB[3-(Mes)pz]_3}Ag(CO)]$ (2)	2125 ^[e] 2128 ^[g]	1.994(3) ^[c]	2.305(2)	1.111(4) ^[c]	this study

[a] The presence of a ν_{CO} band in solution is the only evidence for the existence of some of these compounds. Bond distances are given for compounds that have been characterized structurally. [b] Nujol. [c] Average value. [d] CH₂Cl₂. [e] KBr. [f] THF. [g] Hexane. [h] MeOH.

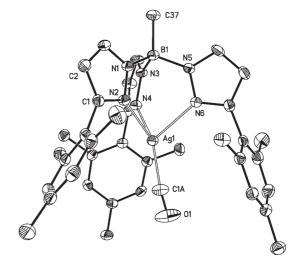


Figure 3. Molecular structure of 2. All hydrogen atoms and the second molecule in the asymmetric unit have been omitted for clarity. Selected bond lengths [Å] and angles [°]: Ag1-C1A 1.995(3), Ag1-N6 2.295(2), Ag1-N4 2.297(2), Ag1-N2 2.316(2), C1A-O1 1.111(4), Ag1-B1 3.393, O1-C1A-Ag1 171.3(4), C1A-Ag1-B1 167.62; (Measurements for the second molecule: Ag2-C2A 1.992(3), Ag2-N8 2.287(2), Ag2-N12 2.312(2), Ag2-N10 2.324(2), C2A-O2 1.112(4), Ag2-B2 3.367, O2-C2A-Ag2 169.2(4), C2A-Ag2-B2 166.25). Thermal ellipsoids are set at the 35% probability level.

adduct 1. The Ag-C-O moiety is not exactly linear (average angle 170.3(4)°) and the average Ag-C bond of 1.994(3) Å is slightly shorter than those reported for [{MeB[3-(C₂F₅)pz]₃}Ag(CO)] and [{HB[3,5-(CF₃)₂pz]₃}Ag(CO)] (2.030(4) and 2.037(5) Å, respectively). This could be a sign of increased π backbonding in the Ag-CO complex bearing the more electron-rich [MeB[3-(Mes)pz]₃] ligand, which is consistent with the observed $\tilde{\nu}_{CO}$ value. [17]

Preliminary data indicate that it is also possible to prepare the corresponding Cu^I and Au^I adducts.^[18] The ν_{CO} band of [{MeB[3-(Mes)pz]₃}Cu(CO)] appears in the IR spectrum at 2075 cm⁻¹ (KBr) whereas for [{MeB[3-(Mes)pz]₃}Au(CO)], this band appears at 2083 cm⁻¹ (hexane). This group trend of

 $\tilde{\nu}_{CO}(Cu) < \tilde{\nu}_{CO}(Au) < \tilde{\nu}_{CO}(Ag)$ is in excellent agreement with both theoretical and experimental data already reported in the literature, [5,20] and clearly shows that the $M \! \to \! L \, \pi$ back donation decreases from Cu^I to Ag^I and increases again from Ag^I to Au^I .

In conclusion, we have shown that it is possible to synthesize and isolate thermally stable Ag–CO and Ag– C_2H_4 adducts using a nonfluorinated, electron-rich ligand [MeB{3-(Mes)pz}₃]⁻, and compound **2** is the first structurally characterized classical silver carbonyl complex.

Experimental Section

1: 1 H NMR (CDCl₃, 298 K): δ = 1.13 (s, 3H, BCH₃), 1.86 (s, 18H, o-CH₃), 2.21 (s, 9H, p-CH₃), 3.42 (s, 4H, CH₂=CH₂), 6.00 (d, 3H, $^{3}J_{\rm HH}$ = 2.0 Hz, C4H), 6.77 (s, 6H, m-CH), 7.78 ppm (d, 3H, $^{3}J_{\rm HH}$ = 2.0 Hz, C5H); 1 H NMR (C₆D₁₂, 298 K): δ = 1.13 (s, 3H, BCH₃), 1.86 (s, 18 H, o-CH₃), 2.18 (s, 9H, p-CH₃), 3.40 (s, 4H, CH₂=CH₂), 5.89 (d, 3H, $^{3}J_{\rm HH}$ = 2.0 Hz, C4H), 6.69 (s, 6H, m-CH), 7.72 ppm (d, 3H, $^{3}J_{\rm HH}$ = 2.0 Hz, C5H). 13 C{ 1 H} NMR (CDCl₃, 298 K): δ = 5.0 (br s, BCH₃), 20.6, 21.1, 95.4 (br s, CH₂=CH₂), 103.6, 127.7, 132.9, 133.1, 137.1, 138.0, 150.3. Crystal data for 1: C₃₉H₄₆N₆AgB, rhombohedral, R3c; 100 K; a = b = 12.0079(5), c = 43.861(2) Å, V = 5477.0(4) Å 3 , Z = 6; R1, wR2 (I > 2σ (I) = 0.0176, wR2 = 0.0452.

2: FTIR: $\tilde{v}_{\rm CO} = 2125~{\rm cm}^{-1}$ (KBr pellets, the $^{13}{\rm CO}$ satellite was observed at 2079 cm $^{-1}$, resolution 1 cm $^{-1}$); 2128 cm $^{-1}$ (hexane, resolution 2 cm $^{-1}$); 2126 cm $^{-1}$ (nujol, resolution 2 cm $^{-1}$); 2129 cm $^{-1}$ (CH₂Cl₂, resolution 2 cm $^{-1}$); ¹H NMR (C₆D₁₂, 298 K): $\delta = 1.11$ (s, 3 H, BCH₃), 1.86 (s, 18 H, o-CH₃), 2.15 (s, 9 H, p-CH₃), 5.91 (d, 3 H, $^{3}{\rm J}_{\rm HH} = 2.0$ Hz, C4H), 6.69 (s, 6 H, m-CH), 7.70 ppm (d, 3 H, $^{3}{\rm J}_{\rm HH} = 2.0$ Hz, C5H). Crystal data for **2**; C₃₈H₄₂N₆AgBO, monoclinic, $P2_{\rm I}/n$; 198 K; a = 24.2090(17), b = 11.2923(8), c = 26.8553(19) Å; $\beta = 100.8030(10)^{\circ}$, V = 7211.5(9) Å 3 , Z = 8; R1, wR2 ($I > 2\sigma(I)$) = 0.0402, wR2 = 0.0907.

1 from 2: Ethylene was bubbled through a solution of 2 in hexane at room temperature to give the corresponding ethylene adduct in quantitative yield.

CCDC-622971 and CCDC-622972 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Received: October 4, 2006

Keywords: alkene ligands · carbonyl ligands · coordination modes · N ligands · silver

- [1] C. Elschenbroich, *Organometallics*, 3rd ed., VCH, Weinheim, 2006.
- [2] K. Weissermel, H.-J. Arpe, *Industrial Organic Chemistry*, 3rd ed., VCH, Weinheim, 1997.
- [3] H. V. R. Dias, X. Wang, Dalton Trans. 2005, 2985–2987, and references therein.
- [4] M. C. Gimeno, A. Laguna, *Comprehensive Coordination Chemistry II, Vol. 6*, Elsevier, Oxford, **2004**, pp. 911–1145.
- [5] A. J. Lupinetti, S. H. Strauss, G. Frenking, *Prog. Inorg. Chem.* 2001, 49, 1–112, and references therein.
- [6] J. P. Fackler, Jr. in Encyclopedia of Inorganic Chemistry, Vol. 7 (Ed.: R. B. King), Wiley, New York, 1987, pp. 3829 – 3834.
- [7] I. Krossing, A. Reisinger, Angew. Chem. 2003, 115, 5903 5906;
 Angew. Chem. Int. Ed. 2003, 42, 5725 5728, and references therein.
- [8] P. K. Hurlburt, J. J. Rack, S. F. Dec, O. P. Anderson, S. H. Strauss, *Inorg. Chem.* 1993, 32, 373–374.
- [9] P. K. Hurlburt, O. P. Anderson, S. H. Strauss, J. Am. Chem. Soc. 1991, 113, 6277 – 6278.
- [10] H. V. R. Dias, W. Jin, J. Am. Chem. Soc. 1995, 117, 11381– 11382.
- [11] H. V. R. Dias, Z. Wang, W. Jin, *Inorg. Chem.* **1997**, *36*, 6205–6215
- [12] H. A. Chiong, O. Daugulis, Organometallics 2006, 25, 4054–4057.
- [13] A. J. Lupinetti, G. Frenking, S. H. Strauss, Angew. Chem., 1998, 110, 2229-2232; Angew. Chem. Int. Ed. 1998, 37, 2113-2116.
- [14] H. V. R. Dias, X. Wang, Polyhedron 2004, 23, 2533-2539.
- [15] H. V. R. Dias, H.-L. Lu, H.-J. Kim, S. A. Polach, T. K. H. H. Goh, R. G. Browning, C. J. Lovely, *Organometallics* 2002, 21, 1466–1473, and references therein.
- [16] M. Munakata, S. Kitagawa, S. Kosome, A. Asahara, *Inorg. Chem.* 1986, 25, 2622–2627.
- [17] H. V. R. Dias, T. K. H. H. Goh, Polyhedron 2004, 23, 273-282.
- [18] H. V. R. Dias, M. Fianchini, unpublished results.
- [19] J. S. Thompson, R. L. Harlow, J. F. Whitney, J. Am. Chem. Soc. 1983, 105, 3522 – 3527.
- [20] H. V. R. Dias, W. Jin, Inorg. Chem. 1996, 35, 3687-3694.
- [21] B. Lenders, W. Kläui, Chem. Ber. 1990, 123, 2233-2240.
- [22] P. K. Hurlburt, J. J. Rack, J. S. Luck, S. F. Dec, J. D. Webb, O. P. Anderson, S. H. Strauss, J. Am. Chem. Soc. 1994, 116, 10003–10014.
- [23] D. L. Reger, J. E. Collins, A. L. Rheingold, L. M. Liable-Sands, G. P. A. Yap, *Organometallics* 1997, 16, 349–353.
- [24] J. Urbano, T. R. Belderrain, M. C. Nicasio, S. Trofimenko, M. M. Diaz-Requejo, P. J. Perez, *Organometallics* 2005, 24, 1528–1532.
- [25] G. Frenking, C. Loschen, A. Krapp, S. Fau, S. H. Strauss, J. Comput. Chem. 2007, 28, 117–126, and references therein.